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Evaluation of terrain effects in AEM surveys using the

boundary element method

Guimin Liu* and Alex Becker#

ABSTRACT

In mountainous areas, electromagnetic terrain ef-
fects are readily observed in the course of VLF (14-20
kHz) measurements made on the surface and consti-
tute a serious source of geological noise that affects the
collected data. One may, therefore, inquire whether
similar effects will be observed during the course of
conventional helicopter-towed electromagnetic (HEM)
surveys as the frequency of the newer systems is in-
creased beyond the lower regions of the audio range. To
answer the question, we have evaluated the terrain
effects that would be observed with a conventional HEM
system in a number of simple cases. The operating

frequency chosen for most of the numerical simulations
was 8 kHz, while the topographic features investigated
were taken to be two-dimensional. The calculations were
done using the boundary element method of solving the
appropriate integral equations. Accuracy of the numeri-
cal solutions was shown to vary from 1 percent for a half
space to 10 percent for a shallow valley where the
verification was done on a laboratory scale model. For
the models investigated, the amplitude of the computed
secondary fields shows a distinct correlation with the
overflown topography. Surprisingly, however, the phase
of the secondary field remains invariant and so may be
reliably used to compute the resistivity of the terrain
below the aircraft.

INTRODUCTION

Terrain effects can be an important factor in any geophys-
ical survey. They are of course most evident in gravity data
and less so in magnetic data. They are not, however, usually
observed in electromagnetic data and were, until recently, of
no concern to the geophysicist who used electromagnetics
for mineral exploration. Because of the high audio frequen-
cies involved, electromagnetic terrain effects were first no-
ticed in VLF data acquired in mountainous areas (Whittles,
1969; Harrison et al., 1971; Arcone, 1978). Further work on
this topic by Karous (1979) and Eberle (1981) offered a
simple explanation for the observed terrain related VLF
anomalies. These could be accounted for by applying Am-
pere’s Law to an assumed uniform current concentration in
a topographic protrusion (Karous, 1979) or, in special cases,
by simply considering the reflection of plane waves from an
inclined surface (Eberle, 1981).

Neither one of these methods allows the prediction of
topographic effects for a closely coupled electromagnetic

system such as is routinely used in ground and airborne
electromagnetic (AEM) surveys. Typically, these surveys
are usually done in the lower audio range (0.3-3 kHz) and
such effects are not observed often. The use of electromag-
netics however, was recently expanded from mineral explo-
ration to encompass geological mapping related to environ-
mental, geohydrological, and geotechnical problems (Fraser,
1978). Accordingly, conventional EM equipment was en-
hanced to operate over a much wider frequency range
(Fraser, 1979) so that at this point operation frequencies up
to 60 kHz are available. One can thus expect that terrain
effects will now be observed more commonly.

The objective here is to numerically evaluate the topo-
graphic effects in an AEM survey using the boundary
eclement method (Brebbia et al., 1984). For eddy current
problems, the theory of deriving the coupled boundary
integral equations was given by Mayergoyz (1982). These
equations have been known for some time in EM literature,
yet no numerical results appear to have been presented
based on this formulation. Here we transform the pertinent
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equations in the strike direction for two-dimensional (2-D)
topography, and then solve the transformed equations nu-
merically. Although in some aspects this work resembles
that of Doherty (1988) or that of Parry and Ward (1971), it
differs in the underlying principle used to derive the bound-
ary integral equations. Furthermore, since in our case the
EM field in the air is quasi-static, a scalar potential suffices to
describe the magnetic field. The resulting boundary integral
equations involve 25 percent fewer unknowns than used by
Doherty so that the numerical computation is considerably
faster. Numerical results for common topographic features
such as an escarpment, a valley, and a hill will be shown
following the presentation of the theory.

MATHEMATICAL FORMULATION

Consider an alternating electric current loop (magnetic
dipole) in the air above a conductive homogeneous ground
with arbitrary surface relief as shown in Figure 1. In the case
examined, the height of the source over the ground is small
compared with the wave length so that the electromagnetic
fields in question are quasi-static. The secondary magnetic
field in the air can be represented by an integral of fictitious
magnetic charges & distributed on the ground surface §.
Similarly, the magnetic field in the earth can be represented
by an integral of fictitious electric currents J distributed on

TABLE OF SYMBOLS

H;, A, H;, Secondary magnetic field and its x- and
z-components
H,, H;,, H,,, H,, Primary magnetic field and its components
1. Jds. 7, Fictitious surficial electric current density
and its tangential (in x-z plane) and y-compo-
nents
¢ fictitious magnetic charge density
% unit vectors along x, y, and z directions

%9,
S ground surface
M apoint on S
P point of integration on §
O a point above §
n, ng, ny, n, outwardunit normal at M and its components
rpym distance from P to M
rpo distance from P to O

p = ”PMIy:()

-

ground surface relief
1 magnetic permeability of ground
pg magnetic permeability of free space
o electrical conductivity of ground
[ frequency of system aperation

k = V — jwpo propagation constant
k, wavenumber along the strike direction

K,y modified Bessel function of the second kind
of order 0 )
K, modified Bessel function of the second kind
of order 1
0 angle of the tangential at P

the ground surface. From the continuity conditions for the
magnetic field, it can be shown that the charges and currents
satisfy the following coupled equations (Mayergoyz, 1982)
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Here n is the unit normal at a field point M on ground surface
§; H, is the primary magnetic field at M; the gradient
operator V is for the field point M. The magnetic permeabil-
ity of the ground is p, and g is that of free space. All the
integrals in equations (1) and (2) are in the sense of the
Cauchy principal value. Once the charges are obtained, the
secondary magnetic field at point O in the air can be

computed by,
E(P)
H, = f = ko ds. 3
s Tpo

FpMm

Equations (1) and (2} have been known for some time in the
electromagnetic literature on eddy currents, yet no numeri-
cal results appear to have been presented based on this
formulation.

In the special case when the lower medium is highly
conductive, equations (1) and (2) reduce to a single equation,

1 1 1
é(M)—Z—T—rJZE(P)n'V Eds= “Z_wn'Hp(M)- “4)

This special case has been previously considered by.Liu and
Becker (1990).

Ground

Fic. 1. Geometry for the boundary-value problem.
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The above formulation is valid for any general 3-D surface
relief. Now consider the case when the conducting medium
includes a 2-D feature that strikes in the y-direction. The
surface relief of the ground can then be described by a
function of x, i.e., 1(x). In this case, the integration along the
y-direction implied in the previous surface integrals is a
convolution of the charges or currents with a geometric
kernel. Taking the Fourier transform of equations (1) and (2)
with regard to y results in

1 ©
J(x,k,)+———f+ nx J(x', k) X U) dx’
2@ )

o
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In these equations, &, is the wavenumber in the y-direction,
v = kaz + iwpo, X, §, and Z are the unit vectors in the

direction of x, y, and z, respectively; K; and K, are the
modified Bessel functions of the second kind of order 0 and
l,and p = Vix — x)?2 + [#(x) ~ t(x")]*. In the deriva-
tion, we have used the following Fourier transform pairs
(Equations 3.754 and 3.961 in Gradshteyn and Ryzhik, 1980),
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where r = V(x — x')2 + y2 + [t(x) — #(x)]°

The primary field due to a magnetic dipole can be analyt-
ically transformed into the wavenumber domain (Liu, 1989).
Thus the right-hand sides of equations (5) and (6) are known.

NUMERICAL COMPUTATIONS

We have carried out numerical computations for a medium
with 2-D surface relief. In this case, the fictitious current J
has two components J,, and Js on the surface S. Here J, is
the component along the y-direction and J ¢ is the tangential
component perpendicular to the y-direction. Equations (5)
and {6) can then be written in scalar form as,

3
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Here,
ay(x, ky) = &(x, ky),
azx{x, ky) =Jy(x, ky),
o3 (x, ky) =Js(x, ky),
Sulx, 2", k)= —(Vyn, + V,yn,),
fio(x, x', ky)=U,n, — Uysng,
fia(x, x', ky) = Uy(—n, sin 8 + n, cos 8),
fa(x, x' ky) = —(Vyng + Vony),
folx, x', ky) = Uyn, + Uzng,
fa(x, x', ky) = —U,(n, sin 8 + n, cos 0)
Falx, x's k)= =V,
faalx, x', ky) =0,
Silx, X', ky) = U, sin 6 — U, cos 0,
Bi = —n Hpe(x, ky) + n Hp, (x, ky),
B2 = —noHpe(x, k) + moHpe(x, k),

B3 = _pr(xs ky):

where 6 is the angle between the x-axis and the tangential in
the x-z plane at point P(x’, ¥'); n,, n,, and n, are the
directional cosines of the unit vector n at the point M(x, v,
z); Uy, Uy, and U, are the three components of U and V.,
V,, and V, are the three components of V.

To solve the three-coupled integral equations (9) numeri-
cally, the infinite integration interval must be truncated. This
finite computational domain can then be discretized into N
small elements with a node in each element. The element
boundary is at the midpoint between two nodes. Here, we
use a quadratic interpolation function to approximate the
behavior of the charge and current densities inside each
element. The coefficients of the quadratic function in each
element are determined from the values at its node and two
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neighboring nodes (Parry and Ward, 1971). Note here that
the nodes are usually nonuniformly spaced and the element
size depends on its distance from the source. Integrating the
contributions of every element in equation (9), we obtain a
system of complex linear equations for the node vatues,

Ko = B. (10)

Here K is the 3N x 3N coefficient matrix assembled from
the element integrals. Each component of the matrix has
contributions from three neighboring elements; « is a column
vector of the unknown charge and current densities at every
node; and B is a column vector of the known boundary
values, B, on the surface §.

Equations (10) are solved independently for each of fifteen
wavenumbers. The wavenumber k, is sampled on a logarith-
mic scale with five points per decade. Except for its initial
value of 0, k, ranges from 1072 to 1. Once the charge
density is obtained, the horizontal and vertical components
of the secondary magrnetic field in the air can be computed in
k, space from the following equations which are the Fourier
transformation of equation (3),

+o0
H.\‘x(x’ ky’ z)zzf (x—x’)f(-xs x,s ky’ Z) dxl (1])

and
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where the integration kernel is
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We now need to take the inverse Fourier transform to get the
required final results. Prior to performing this operation
however, the field values at logarithmically spaced points in
the k,, space need to be interpolated to a uniform grid using
cubic spline interpolation.

VERIFICATION OF NUMERICAL PROCEDURES
Flat conductive half-space

An initial check of the numerical computation can be
obtained by considering the case of a conductive half-space
with a flat surface. In this case the analytical solution in an
integral form is well known (Ward and Hohmann, 1987) so
that the numerical results can be verified for a wide range of
frequencies. We first consider the response of a helicopter-

Table 1. Typical grid used for numerical computation.'

Cell No. 1-3 4-8 9-16 17-32 33-40 41-45 4648
Ax(m} 20 9 6 3 6 9 20:

towed electromagnetic (HEM) system. The transmitter is a
small coil driven with an alternating electric current and is
located 30 m above the ground. The receiver is an induction
coil that measures the secondary magnetic field. The trans-
mitter and receiver coils can be taken as coaxial horizontal
dipoles and are separated by 6.5 m. The ground is assigned
a conductivity value of 0.1 S/m. The grid used in the
computation is shown in Table 1.

The coaxial system response obtained at the center of the
computational domain, which is 354 m wide, is plotted in
Figure 2. The abscissa indicates the in-phase component of
the secondary magnetic field expressed in parts per million
(ppm) of the received primary magnetic field while the
ordinate is the quadrature component. In the illustration, the
circles represent the numerical solution while the solid line is
the analytical solution. As shown, the numerical result
agrees well with the analytical solution over the entire 25 Hz
to 250 kHz frequency range. In fact, except at 25 Hz, the
error of the numerical solution for both the in-phase and
quadrature components is, in this case, less than 1 percent at
any indicated frequency. The relative error of the numerical
solution increases with decreasing frequency. This problem
is caused by the theoretical formulation that breaks down
when the frequency approaches zero. A similar problem was
also observed by Doherty (1988).

Conductive valley

The numerical solution was also checked on a laboratory
scale model of a valley. Aluminum was used to simulate the
conductive terrain at a dimension scale of 1:250. A model
airborne electromagnetic system was built at the same scale
and was ‘“‘flown,” for experimental convenience, at a field
height of 10 m (4 cm in the laboratory). The frequency scale
of the model is 1:3750 while the conductivity scale is 2.34 X
108:1. The system consisted of a coplanar, vertical axis
transmitter and receiver, which were operated at a field
frequency of 150 kHz (40 Hz in the laboratory) and were
separated by a field distance of 10 m. The conductivity of the
aluminum used in our experiment is 2.34 x 107 S/m, which
simulates a ground conductivity of 0.1 S/m. Note. that the
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Fig. 2. Comparison of numerical and analytical AEM re-
sponse (coaxial) over a flat ground of 0.1 S/m System
altitude = 30 m.



276 Liu and Becker

model parameters are related to the field parameters by the
following equation (Frischknecht, 1987),

a'fe'? =ofe’,

Here o, f, and € are the field conductivity, frequency, and
dimension, while the notation with a prime represents the
corresponding model parameter.

The cross-section of the simulated valley, shown in Figure
3, is a Gaussian function given by

x2
t{x) = A exp (—m) (13)

Here,

x = distance from the valley center line
t = topographic relief

A = valley depth

W = valley width at mid depth.

The shape of the valley is invariant along the strike direction.
For the model valley, A and W were taken to be 3.4 m and
21 m, respectively. The measurements and numerical caicu-
lation results for this model are also displayed in Figure 3 for
the in-phase and quadrature components of the secondary
magnetic field. Here the system response is plotted at a point
located midway between the transmitter and receiver. The
measurement error in the experiment is estimated to be less
than 5 percent for the in-phase component and 10 percent for
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FiG. 3. Comparison of numerical and experimental results
for a Gaussian model valley. The simulated coplanar system
is flown at an altitude of 10 m with an operation frequency of
150 kHz. .

the quadrature component. Within these limits, the numeri-
cal and experimental data agree well.

TERRAIN EFFECTS

Here we present numerical results for AEM surveys made
over escarpment, valley, and hill models. The AEM system
simulated in this study includes the coaxial and coplanar coil
configurations. The transmitter and the receiver are sepa-
rated by 6.5 m. The operation frequency is 8 kHz and the
conductivity of the ground is assumed to be 0.1 S/m. Since
the response of the coplanar system resembles that of the
coaxial system, we will concentrate on the analysis of the
results for the coaxial system. The grid used in the compu-
tation is identical to that used previously (Table 1).

Escarpment

Let us first consider a smooth escarpment model whose
relief is given by

b (w
t(x)=— (— + tan ! (ax)),
m\2

where b is the elevation at the top of the escarpment and a
is related to its slope; x is the distance from the center of the
escarpment. The survey is flown at constant barometric
elevation so that the system coils are maintained at z = ~30¢
m or 30 m above the upper level of the feature.

Figure 4 shows the coaxial response for an escarpment
defined by a = 0.1309 and & = 24 m. The slope is 45
degrees at the center of the escarpment. Both the in-phase
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F1G. 4. (a) Model escarpment. (b) Numerical coaxial AEM
response over the model escarpment. The system is flown at
30 m above the upper level of the escarpment. (c) Argand
diagram of the response (crosses); background lines are the
AEM response over a flat ground surface. .
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and the gquadrature vary smoothly over the escarpment as
expected (Figure 4b). At either side, the influence of the
escarpment may be neglected at a distance of twice the
system height. Although the escarpment is antisymmetric
about x = 0, the response is asymmetric since the response
is nonlinear with the system height.

To examine the effects of the escarpment on a conven-
tional method of data interpretation in terms of an apparent
resistivity (Fraser, 1978), we have replotted the profile data
on an Argand chart of conductive half-space response. As
can be seen in Figure 4(c), the data points are very closely
aligned with the af = 800 radial. Given the 8 kHz frequency
for the numerical experiment, all the data for this profile will
yield the correct apparent resistivity of 0.1 S/m.

Valley

The simulation is done for an overflight of a symmetric
triangular valley with 20-degree side slopes and a base width
of 120 m. The system flight height is maintained at a constant
altitude of 30 m above the flat part of the terrain. In this case,
as shown in Figure 5, both the in-phase and quadrature
components of the secondary field show a negative anomaly
over the valley. Its amplitude is about 100 ppm in the
in-phase component and about 85 ppm in the quadrature
secondary field.

Again we have replotted the profile data on an Argand
chart of conductive half-space response. As can be seen in
Figure 5(c), all the data for this profile will also yield the

140 h=30m

Quadrature (ppm)

Response (ppm)

Fic. 5. (a) Model valley. (b) Numerical coaxial AEM re-
sponse over the model valley. The system is flown at 30 m
above the flat part of the terrain. (¢) Argand diagram of the
response (circles); background lines are the AEM response
over a flat ground surface. '

correct apparent resistivity of 0.1 S/m. Numerical experi-
ments at other frequencies (1 and 64 kHz) yield similar
results. It thus appears that the phase of the secondary field
is not affected much by terrain features over a fairly wide
range of operating frequencies.

The presence of the valley, however, is clearly indicated
by the incorrect estimate of the system height above the
conducting surface in Figure 5(c). This quantity turns out to
be 43 m over the deepest portion of the valley which in fact
lies at about 52 m below the AEM system. This incorrect
estimate of the system elevation is caused by using the flat
ground model in the case of a ground with terrain relief.

Hill

We now examine the numerical results that would be
obtained in a overflight of a small, symmetric, triangular hill
with a base width of 60 m and slopes of 20 degrees. In this
case the aircraft altitude is maintained at 30 m above the
terrain including the hill summit that rises 11 m above the
background. The results for this draped overflight simulation
are shown in Figure 6. This time the signal amplitude rises
somewhat as we approach the hill and then falls sharply
when the aircraft altitude is raised to maintain constant
terrain clearance over the hill top. Once again, when the
numerical results are plotted on the appropriate Argand
diagram, a correct value of apparent resistivity is indicated
all along the profile. The apparent system terrain clearance
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Fic. 6. (a) Model hill. (b) Numerical coaxial AEM response
over the model hill. The system is flown at a constant terrain
clearance of 30 m including the hill summit. (c) Argand
diagram of the response (circles); background lines are the
AEM response over a flat ground surface.
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however is in error as it indicates a system altitude of 35 m
[Figure 6(c)] over the hill top.

CONCLUSIONS

The numerical results show that frequency domain AEM
data acquired in areas of moderate topography can be
interpreted using the conventional Argand diagram method
to obtain good estimates of ground conductivity. Because
the system footprint is of the same order of magnitude as its
elevation above ground surface, the secondary field ampli-
tude is not affected by any topography that is distant from
the AEM system by more than twice the system elevation.
Directly overflown features will, however, affect the ob-
served secondary field amplitude. This effect can be ignored
in obtaining conductivity estimates for a homogeneous half-
space but could lead to erroneous estimates in areas where
the ground exhibits layering.

One should note however that not all possible ‘*apparent
conductivity” definitions will yield this satisfactory result.
In the Argand diagram method used above, the interpreted
conductivity value is closely related to the phase angle of the
secondary field and this quantity does not show much
variation with terrain clearance. On the other hand, Fraser
(1978) shows that one can also obtain reliable conductivity
estimates by considering the amplitude of the secondary field
for a given terrain clearance. This method will not give
proper results over irregular terrain and will introduce
terrain effects into the conductivity estimates. For example,
if we consider the synthetic survey results for the escarp-
ment (Figure 4), we see a very noticeable change in second-
ary field amplitude at some distance from the escarpment
slope that is not accompanied by any visible change in
terrain clearance. Use of the “‘altitude-amplitude’’ method
here would result in a severe (50 percent) underestimation of
the terrain conductivity near the upper level of the escarp-
ment.

Finally, we would like to suggest other uses for the 2-D
algorithm presented here. It can also be used to model the
effects of a conductive basement under a resistive overbur-
den of variable thickness. A practical application of this
concept is the computation of AEM low-frequency response
of the irregular interface between sea ice and sea water in the
Arctic regions. The previously published work in this area

(Liu and Becker, 1990) was based on the assumption that the
system response was at the inductive limit so that the
conductivity of the sea water could be considered to be
infinite.
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